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Abstract: In teaching chemical kinetics most textbooks use the Lotka�Volterra Model to introduce the concept 
of chemical oscillations. Unfortunately, the Lotka�Volterra Model yields neutrally stable limit cycles for any 
initial conditions, which is a nonphysical property not observed in chemical kinetics. A more physical, two-
variable model with simple linear stability analysis is, therefore, desirable. Here, we consider a Modified Lotka�
Volterra Model that shows multiple physical steady states and both damped and stable oscillations. We can also 
study a stable node bifurcation to a saddle point and a stable node bifurcation to a stable limit cycle. This 
dynamically richer model can be analyzed through a simple linear stability analysis and numerical integration of 
the system of ordinary differential equations. Both methods, in particular the analytical analysis, are accessible to 
undergraduate students. 

Introduction 

Nowadays, most modern physical chemistry textbooks [1, 2] 
discuss nonlinear chemical kinetics. Although it is common 
practice to use the Lotka�Volterra Model (LVM) [3, 4] to 
introduce the concept of chemical oscillations, it is still 
recognized that the LVM is not an entirely optimal example of 
oscillations. On the one hand, it lacks a bifurcation relation, its 
oscillations only show marginal stability, and the LVM has a 
fixed point at infinity, which is nonphysical. On the other 
hand, a linear stability analysis is accessible to most 
undergraduates, making a simple two-variable model with 
stable oscillations and with a relatively simple stability 
analysis desirable. 

In a past issue of this journal [5], we introduced the Higgins 
Model (HM) [6] as an alternative to the LVM. The HM is a 
more physical two-variable model in enzyme kinetics and a 
better example of chemical oscillations. In spite of the HM's 
physical foundation, its linear stability analysis is quite 
challenging and time-consuming for most undergraduates. To 
alleviate the cumbersome algebra associated with the HM, we 
introduce a Modified Lotka�Volterra Model (MLVM) as an 
alternative model to study chemical oscillations at the 
undergraduate level. 

Even though a given Lotka�Volterra-type model has no 
chemical system associated with it, its linear stability analysis 
is simple compared to the analyses of any of the two-variable 
chemical models available. In addition, these types of models 
allow us to introduce several essential concepts in nonlinear 
chemical kinetics. First, we typically discuss the LVM in the 
classroom to introduce linear stability analysis. Second, we 
assign the analytical study of the MLVM as a problem set. 
This model shows multiple physical steady-state solutions, 
stable oscillations, and a simple bifurcation relation. In 
addition, all the linear stability analysis associated with this 
model is extremely accessible to undergraduates. Third, we 
study the MLVM numerically in a laboratory session. The 
numerical analysis can be carried out using any available 
software package capable of numerically integrating a system 
of differential equations. Finally, a laboratory report is 
required that should include several examples of the different 

bifurcations as well as the predictions derived from the 
analytical analysis. As a result, the students have a better sense 
of how the analytical and numerical analyses carried out in 
chemical kinetics complement each other. With this 
knowledge, the students are ready to study complex but more 
chemical models where, in many cases, only numerical 
integration is possible. 

Although changes to the LVM are not new, none of the 
previous modified versions of the LVM [7] has been used to 
introduce chemical oscillations at the undergraduate level. Of 
the several modified models, we consider in Section II the 
changes to the LVM first suggested by Holling [8], which 
define the MLVM studied in this paper. In Section III, we use 
linear stability analysis to obtain a bifurcation relation among 
other results. This analysis yields dynamic information that is 
studied numerically in Section IV. We conclude with a 
discussion in Section V. 

Modified Lotka�Volterra Model 

Originally, Lotka introduced his model in 1920 [3] in 
relation to mass-action laws and chemical reactions. Six years 
later, Volterra used the same system of ordinary differential 
equations (ODEs) to study population dynamics. The model 
considers the interaction of only two species, the prey, G, and 
the predator, R. Considering G and R as the only measurable 
variables, the Lotka�Volterra Model is defined by the 
following ODEs: 

 o r
dG k G k GR
dt

= −  (1) 

 r rd
dR k GR k R
dt

= −  (2) 

Equations 1 and 2 represent the LVM where ko, kr, and krd 
are rate constants. While the model became quite popular 
because of its simple mechanistic interpretation and simple 
linear analysis, it cannot truly show some of the most 
important concepts in nonlinear chemical dynamics. Notice 
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that eqs 1 and 2 have a fixed point at infinity when R 
approaches the zero value, which means a prey exponential 
growth without a limit. In addition, as the prey population 
grows, the predator growth rate has no bounds. 

In addition to these problems, a linear stability analysis, 
which is easy to do, yields marginal stable limit cycles. A limit 
cycle is the representation of the population oscillations in 
time when, instead of plotting G or R versus time, we plot prey 
versus predator populations. Moreover, if one applies a small 
change to G or R on a marginally stable limit cycle, the cycle 
will just shift to another limit cycle. Therefore, no initial 
condition will spiral in or out towards a limit cycle, which is a 
behavior observed in all chemical limit cycles. In spite of the 
simplicity of the LVM, a model with multiple physical steady 
states and stable limit cycles is desirable to introduce some of 
the most important concepts in nonlinear chemical kinetics at 
the undergraduate level. 

Considering the simple physical interpretation of the Lotka�
Volterra mechanism using the language of population 
dynamics, we discuss here a generalized Lotka�Volterra-type 
mechanism. 

The model can be considered a modified LVM, but its 
modifications will yield more physical dynamic behaviors 
better suited to chemical kinetics. As in the classical LVM, we 
first consider the reproduction of the prey, G,  

 ( )gk GG G G → +  (3a) 

where, in the general case, the rate of reproduction is a 
nonlinear function of the prey population. In the LVM, we 
simplify this functionality to a linear relation, that is, kg(G) = 
ko(G). Second, we consider the predator, R, reproduction at the 
expense of the prey, 

 ( )rk GG R R R+  → +  (3b) 

Here, the rate is a nonlinear function of the prey and 
predator populations. Again, in the LVM, this rate is 
simplified to a quadratic relation linear in each of the prey and 
predator population, that is, krGR. Finally, we consider a 
simple predators death rate proportional to the predator 
population 

 rdkR φ  →  (3c) 

Eqs 3a�c constitute the Generalized Lotka�Volterra Model 
(GLVM). Different approximations can be made for the 
growth rates of the prey and predator, yielding several similar 
models [9]. 

Now we will consider specific changes that will remove 
some of the disadvantages of the Lotka�Volterra Model. For 
example, the fixed point at infinity is nonphysical. To remedy 
this problem, we consider that the prey reproduction follows a 
logistic growth. This growth translates into a prey-dependent 
rate constant, 

 o 0( ) ( )gk G k G G= −  (4) 

where Go is the carrying capacity of the environment. The 
second modification considers expressions that includes an 

exponential predator growth in the abundance prey limit, that 
is, G » 0. This limiting exponential growth is attained using 
different expressions for the prey-dependent rate constant 
kr(G). In particular, we use the following expression first 
suggested by Hollings [8]:  

 ( ) r
r

g

kk G
K G

=
+

 (5) 

where kr(G) approaches zero as kr/G when G » Kg. 
Consequently, in this limit, eq 3b yields an exponential 
growth, krR. Using the previous changes given by eqs 4 and 5, 
we obtain the following ODEs associated with the Modified 
Lotka�Volterra Model:  

 o o 1( ) ( , )r

g

dG k GRk G G G g G R
dt K G

= − − ≡
+

 (6) 

 2 ( , )r
rd

g

dR k GR k R g G R
dt K G

= − ≡
+

 (7) 

Immediately we notice that the divergent fixed point in the 
LVM has been moved to (Xo, 0) in the MLVM. This point 
represents the extinction of the predator and the prey's 
maximum population; therefore, the three steady states of eqs 
6 and 7, total extinction, predator extinction, and prey�
predator coexistence, are more physical than the three steady 
states associated with the LVM. In addition, the prey's 
population is limited by the carrying capacity of the 
environment, Go, and the predator growth rate is limited by an 
exponential growth krR.  

Linear Stability Analysis 

In this section, we present a linear stability analysis [7, 10] 
of the Modified Lotka�Volterra Model. For this purpose we 
scale the differential equation such that the dimensionless 
differential equations depend only on three parameters rather 
than five. Namely, we get from eqs 6 and 7:  

 o o 1( ) ( , )
1

dX kXYr X X X f X Y
d Xτ

= − − ≡
+

 (8a) 

 2 ( , )
1

dY kXY Y f X Y
d Xτ

= − ≡
+

 (8b) 

where we have defined the following dimensionless quantities:  

 
rd

t
k

τ =  (9a) 

 
g

GX
K

=  (9b) 

 
g

RY
K

=  (9c) 
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 o
o

g

rd

k K
r

k
=  (9d) 

 r

rd

kk
k

=  (9e) 

In the first step of the stability analysis we find the steady-
state solutions. In general, this is done by setting the left-hand 
side of the differential equations equal to zero, that is,  

 1( , ) 0ss ssf X Y =  (10a) 

 2 ( , ) 0ss ssf X Y =  (10b) 

and solving for Xss and Yss. From eqs 8a and 8b, we obtain 
three steady-state solutions. First, the trivial solution where 
both the prey and the predator are not able to survive, 

 1 0ssX =  (11a) 

 1 0ssY =  (11b) 

Second, the case when the predator is unable to survive,  

 2 o
ssX X=  (12a) 

 2 0ssY =  (12b) 

Finally, the prey�predator coexistence is given by:  

 3
1

1
ssX

k
=

−
 (13a) 

 o
3 o

( 1) 1
1

ss X kY r
k

− −=
−

 (13b) 

Clearly from eqs 13a and b, we can see that not only k has to 
be greater than one, but Xo(k � 1) > 1 to get meaningful 
solutions; that is, Xss and Yss have to be positive. From eq 9e, 
this condition means that the reproduction rate constant, kr, has 
to be greater than the death rate constant, krd. 

Once these stationary state solutions are obtained, stability 
analysis studies what happens to the dynamic variables X and 
Y when a steady-state solution is slightly perturbed. Namely, 
we want to know if the perturbations grow or die out. This 
knowledge is obtained by first calculating the relaxation 
matrix, R, which is the Jacobian associated with a set of ODEs 
[8]. This matrix is defined by the following equation: 

 

1 1

2 2

( , ) ( , )

( , ) ( , )

ss ss ss ss

ss ss ss ss

f fX Y X Y
X Y

R
f fX Y X Y
X Y

∂ ∂� �� � � �
� � � �� �∂ ∂� � � �� �=

� �∂ ∂� � � �
� �� � � �∂ ∂� � � �� �

 (14) 

For the scaled MLVM, we obtained a simple relaxation 
matrix,  
 

 
2

2

o o (1 ) 1

(1 ) 1

( 2 )

1

ss ss

ss ss

ss ss

ss ss

ss kY kX
X X

kY kX
X X

r X X
R + +

+ +

� �− − −
� �= � �

−� �
� �

 (15) 

where Xss and Yss are functions of the dimensionless 
parameters ro, Xo, and k. In our case, we will end up with three 
matrices, one for each of the solutions of eqs 10a and 10b. 
Next, to find out the stability of each steady-state solution, we 
have to substitute the corresponding values of Xss and Yss in eq 
15. For example in the case of (X3

ss,Y3
ss), the relaxation matrix 

reduces to  

 
o

o

1
ok 1

ok

[ 1

[ ( 1) 1] 0

r k
k

r

X
R

X k

+
−

� �− −
� �=
� �− −� �

 (16) 

Finally, we have to find the corresponding eigenvalues for 
each of the three matrices. The analysis of the eigenvalues will 
yield the dynamic properties of each of the steady-state 
solutions. Finding the eigenvalues of R is equivalent to finding 
the solutions, λ, of the following equation. 

 0R Iλ− =  (17) 

where I is the identity matrix, and the vertical lines stand for 
the determinant. For any two variable models, eq 17 reduces to 
the following characteristic quadratic polynomial: 

 2 tr det 0R Rλ λ− + =  (18) 

where trR and detR stand for the trace and determinant of R. 
Furthermore, the solutions of the quadratic equation are 

 ( )21
2 tr (tr ) 4detR R Rλ± = ± −  (19) 

From this equation we can infer general properties for any 
two-variable models. First, consider the case of a negative 
determinant, detR < 0. In this case we get two real eigenvalues, 
one positive and one negative. These two values imply that the 
steady-state solution is a saddle point. Second, we consider the 
case of a positive determinant of R and 4detR < (trR)2. These 
two conditions imply two real eigenvalues, both either positive 
or negative. On one hand, if the trace is negative then both 
eigenvalues are negative, and we have a stable node. On the 
other hand, if the trace is positive then both eigenvalues are 
positive, and we have an unstable node. In the particular case 
when detR = 0, we obtain one zero eigenvalue and a second 
eigenvalue either negative or positive. These values define a 
saddle-node bifurcation point. Finally, we consider the case of 
a positive determinant and 4detR > (trR)2. In this case, we have 
two imaginary eigenvalues, and the stability of the solutions is 
now determined by the real part, which in this case is given by 
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Table 1. Dimensionless Values 

Parameter Value 
ro = 0.60 
Xo = 8.00 
k ≈ 1.30 

 

 
Figure 1. Phase-space representation of a transition through a 
bifurcation for the Modified Lotka�Volterra Model using parameters 
in Table 1 and different k values.  

the trace of the relaxation matrix. Damped oscillations will be 
observed for a stable focus if the trace of R is negative. In 
contrast, the so-called spiraling out will be observed for an 
unstable focus if the trace of R is positive. In the latter case, 
the growing oscillations most likely will settle in a stable limit 
cycle.  

Using eqs 11a and b in 15, we find a simple matrix that can 
be used in conjunction with eq 19 to find the following 
eigenvalues: 

 1 1λ− = −  (20a) 

 1
o or Xλ+ =  (20b) 

which means that the solution associated with total extinction 
is a saddle point. Next, we consider eqs 12a and b and find 

 2
o 0r Xλ− = −  (20c) 

 2 o

o

( 1) 1
1

X k
X

λ+
− −=

+
 (20d) 

Here the predator extinction solution is a stable node if Xo(k 
� 1) < 1, but a saddle point if Xo(k � 1) > 1. Finally, in the case 
of (X3

ss,Y3
ss), we consider the trace and determinant of R,  

 o
o

1tr
k 1
r kR X

k
+� �= −� �−� �

 (21a) 

 [ ]o
odet ( 1) 1

k
rR X k= − −  (21b) 

Notice the similarity between eqs 13b�20d and eq 21b. As a 
consequence of this similarity, both the determinant of R and 
the steady state, Y3

ss, associated with the prey�predator 
coexistence solution are negative when the predator extinction 
solution is stable, Xo(k � 1) < 1. From our previous discussion, 
this means that while (Xo, 0) is stable, the nonphysical 
coexistence solution is a saddle point. At Xo = 1/(k � 1), we get 

2
o or Xλ− = − and 2 0λ+ = , these parameter values define a 

saddle-node bifurcation, where both the predator extinction 
and coexistence solutions change their dynamic properties. 
Now, when (Xo, 0) is a saddle point, the determinant of R 
associated with (X3

ss, Y3
ss) is positive, and we have several 

possibilities. First, we consider 4detR < (trR)2, where a stable 
node is observed for the coexistence solution if the trR is 
negative and an unstable node if the trR is positive. Second, if 
4detR > (trR)2 we get two imaginary eigenvalues, and the 
stability is given solely by the trR. One possibility is a stable 
focus or attractor showing damped oscillations. Another 
possibility is an unstable focus or repeller showing a limit 
cycle; therefore, we find again a change in dynamic behavior 
at trR = 0, which defines a second bifurcation in the MLVM. 

To determine the second bifurcation we need to find a 
relation between the parameters that yields a zero trace. Using 
eq 21a, we find the following equivalent relations that yield a 
zero trace for the coexistence solution: 

 o
1
1

kX
k

+=
−

 (22a) 

 o

o

1
1

Xk
X

+=
−

 (22b) 

Now, if we consider parameter values near the bifurcation 
relation, most likely (trR)2 will be less than 4detR, and we get 
two imaginary eigenvalues. Hence, we can select parameter 
values that will give us damped oscillations as well as stable 
limit cycles. 

It is plausible after this analysis to pick parameter values 
such that Xo(k � 1) < 1. This choice will yield a stable predator 
extinction solution and a nonphysical coexistence solution. 
Furthermore, we can select parameter values in the nearby 
neighborhood in parameter space such that Xo(k � 1) ≈> 1, 
which gives us a saddle point for the predator extinction 
solution and a stable node for the coexistence solution. Finally, 
by changing the parameters, we can obtain damped and stable 
oscillations. In summary, the MLVM gives a plethora of 
dynamic behaviors closer to the dynamics observed in 
nonlinear chemical kinetics. 

Numerical Results 

Our analysis of the two-variable model, eqs 8a and 8b, 
occurs in several stages. In the first stage, we vary one 
parameter (k) while holding the other parameters constant 
(Table 1). Notice that the critical bifurcation values of k are 
given by eqs 20d�22b, kc

sn
 = 1.1250, kc

uf = 1.2857. For this 
case, we examine the effects of the parameter changes on X 
and Y in phase space, which is depicted in Figure 1. We start 
with k = 1.01 < kc

sn < kc
uf and get a stable node for the predator 

extinction solution, (8, 0), and a saddle point for the 
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Figure 2. Effects of k on the amplitude of the oscillations in phase 
using parameters in Table 1 and different k values.  

 
Figure 3. Effects of ro on the amplitude of the oscillations in phase 
space for Xo = 8.00, k = 1.30, and different ro values. 

 
Figure 4. Examples of different trajectories in phase space for Xo = 
8.00, k = 1.30, and ro = 0.60, and different initial conditions. 

Table 2. Dimensionless Values 

Parameter Value 
ro = 0.60 
k = 1.30 
Xo ≈ 8.00 

 

nonphysical coexistence solution. As we change k to kc
sn < 

1.20 < kc
uf, (8, 0) is a saddle point and (5, 9) is a stable node 

with two negative real eigenvalues, �1.262 and �0.238. 
Finally, we consider kc

sn < kc
uf < k = 1.30. In this case, the 

coexistence solution (9.33, 3.33) is an unstable focus and we 
find a limit cycle. 

In Figure 2, we explore the effect of k on the oscillation's 
amplitude. As we can see, the amplitude increases as we 
increase the value of k. Parallel to this analysis, we change ro 
instead of k in Figure 3, where we notice that amplitude 
increases as we increase ro. To complement these observations, 
we consider Xo = 8.00, ro = 0.60, and k = 1.30 in Figure 4, and 
we choose seven different initial conditions. Our choice is 
such that only one of those initial conditions spirals out 
towards the limit cycle, while the other six spiral in. 

Next, we fix the value of k as in Table 2 and vary the value 
of the dimensionless carrying capacity, Xo. In Figure 5, we start 
with Xo = 7.00, which yields damped oscillations characteristic 
of a stable focus. Also showing damped oscillations is the 
value Xo = 7.50. For Xo = 8.0, as we have seen before, we get a 
limit cycle. Finally, we consider Xo = 8.5 and notice that the 
amplitude has increased as we increased Xo. As confirmation 
of this bifurcation we use eq 22a and find that the bifurcation 
value of Xo is equal to Xo

uf = 7.666, which is consistent with 
our numerical analysis. 

In the last part of the numerical analysis, we considered 
some time series. For the previous parameter values, Xo = 8.00, 
k =1.30, and ro = 0.60, we depict the time series in Figure 6 
where we can notice the transient oscillations from the initial 
condition to the stable limit cycle. In this particular case, the 
predator population is greater than the prey population at any 
time. As we change the values to Xo = 8.00, k = 1.325, and ro = 
0.60, the maximum value of Y is greater than the maximum of 
X. But, as we can see in Figure 7, now these maxima alternate 
in time. Finally, we consider a last set of parameter values, Xo 
= 8.00, k = 1.325, and ro = 0.30, and depict the time series in 
Figure 8. In this case the maxima alternate in time, but now the 
maxima of Y is less than the maxima of X; therefore, the 
MLVM allow different shapes of oscillation that can be 
matched to any experimental observations 

Discussion 

In the previous sections we have introduced and analyzed a 
Modified Lotka�Volterra Model. For this model we have used 
a linear stability analysis to obtain dynamic properties of the 
steady-state solution. The algebra involved in the analysis is 
quite simple, and all the results and relations presented are 
easy to obtain with or without the help of a program like 
Mathematica [11]. Furthermore, we encourage the readers to 
reproduce our results without the help of any symbolic 
software package. The analytical information was corroborated 
by numerical integration of the ODEs using a couple of 
software packages, including Mathematica [11]. For the 
MLVM we have obtained a bifurcation relation, multiple 
steady states, stable and unstable nodes, and limit cycles. Also, 
by varying either k or Xo, we have shown transitions from a 
stable node to damped oscillations to stable oscillations and 
from a stable node to a saddle point. The present modifications 
to the LVM include two changes. In order to have physical 
steady states and a bifurcation from stable steady states to 
stable limit cycles, both modifications are needed. Here we 
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Figure 5. Phase-space representation of a transition through a 
bifurcation for the Modified Lotka�Volterra Model using parameters 
in Table 2 and different ro values. 

 
Figure 6. Time series of X and Y oscillation for Xo = 8.00, k = 1.30, 
and ro = 0.60. 

 
Figure 7. Time series of X and Y oscillation for Xo = 8.00, k = 1.325 
and ro = 0.60. 

 
Figure 8. Time series of X and Y oscillation for Xo = 8.00, k = 1.325 
and ro = 0.30. 

claim that each individual change cannot yield the latter 
changes in dynamic behavior. If one includes only a logistic 
growth of the prey, one finds that the eigenvalues are either 
pure real and negative or complex with a negative real part. 
Consequently, this change only shows stable nodes or a stable 
focus; that is, only damped oscillations are observed. The 
second modification alone cannot remove the fixed point at 
infinity. Also, the real part of the eigenvalues obtained are 
positive for any value of the parameters. It, therefore, cannot 
yield stable steady states, which are required for a bifurcation. 
Both of these results are left as exercises for the reader. In 
summary, the MLVM discussed in this paper gives an 
alternative to the LVM to introduce important concepts in 
nonlinear chemical kinetics. Not only does the MLVM show 
all the important dynamic properties as other popular chemical 
models [12�15], but also its study follows straightforward 
linear stability analysis, eliminating cumbersome and time-
consuming algebra encountered in the analysis of other models 
[12�15]. 
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